nnablaチャンネルを開設しました
>> YOUR LINK HERE: ___ http://youtube.com/watch?v=4bNAPKTUVtE
ソニーが提供するオープンソースのディープラーニング(深層学習)フレームワークソフトウェアのNeural Network Libraries( https://nnabla.org/, https://github.com/sony/nnabla/ )に関連する情報を紹介する動画チャンネルを開設しました( / nnabla )。Neural Network Librariesのチュートリアル・Tipsに加え、最先端のディープラーニングの技術情報(講義、最先端論文紹介)などを発信していきます。チャンネル登録と応援よろしくおねがいします! • 同じくソニーが提供する直感的なGUIベースの深層学習開発環境のNeural Network Console( https://dl.sony.com/ )が発信する大人気のYouTubeチャンネル( / neuralnetworkconsole )でもディープラーニングの技術講座やツールのチュートリアルを多数公開しています。こちらもチャンネル登録と応援よろしくおねがいします。 • 【動画内引用文献・リンク】 • Hayakawa, Akio, et al. Neural Network Libraries: A Deep Learning Framework Designed from Engineers' Perspectives. arXiv preprint arXiv:2102.06725 (2021). https://arxiv.org/abs/2102.06725 • sony/nnabla-examples: Neural Network Libraries - Examples (https://github.com/sony/nnabla-examples/) • Google Colaboratory - https://colab.research.google.com/ • Mikami, Hiroaki, et al. Massively distributed SGD: ImageNet/ResNet-50 training in a flash. arXiv preprint arXiv:1811.05233 (2018). https://arxiv.org/abs/1811.05233 • Howard, Andrew, et al. Searching for mobilenetv3. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. https://arxiv.org/abs/1905.02244 • Tan, Mingxing, and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning. PMLR, 2019. https://arxiv.org/abs/1905.11946 • Karras, Tero, et al. Analyzing and improving the image quality of stylegan. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. https://arxiv.org/abs/1912.04958 • Siarohin, Aliaksandr, et al. First order motion model for image animation.“ NeurIPS 2019. https://arxiv.org/abs/2003.00196 • Park, Taesung, et al. Semantic image synthesis with spatially-adaptive normalization. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. https://arxiv.org/abs/1903.07291 • Chu, Mengyu, et al. Learning temporal coherence via self-supervision for GAN-based video generation. ACM Transactions on Graphics (TOG) 39.4 (2020): 75-1. https://arxiv.org/abs/1811.09393 • Wang, Yuxuan, et al. Tacotron: Towards end-to-end speech synthesis. Proc. Interspeech 2017. https://arxiv.org/abs/1703.10135 • Shen, Jonathan, et al. Natural tts synthesis by conditioning wavenet on mel spectrogram predictions. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. https://arxiv.org/abs/1712.05884 • Stöter, Fabian-Robert, et al. Open-unmix-a reference implementation for music source separation. Journal of Open Source Software 4.41 (2019): 1667. https://hal.inria.fr/hal-02293689 • Prenger, Ryan, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network for speech synthesis. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. https://arxiv.org/abs/1811.00002
#############################
![](http://youtor.org/essay_main.png)