Project 3 Data Analysis with Python DataScience Police Dataset
YOUR LINK HERE:
http://youtube.com/watch?v=GyUbo45mVSE
Download Source Code of this project (Rs.39) - https://rzp.io/l/project3sourcecode • Download - Data Science Data Analytics Self Study Notes - https://datasciencelovers.graphy.com/... • Download Dataset File - https://datasciencelovers.graphy.com/... • Download - Python Pandas Notes ( Rs.50 ) - http://bit.ly/3KxMpgA • Enrol in our Udemy courses : • 1. Python Data Analytics Projects - https://www.udemy.com/course/bigdata-... • 2. Python For Data Science - https://www.udemy.com/course/python-f... • 3. Numpy For Data Science - https://www.udemy.com/course/python-n... • Download Free Core Python Notes - https://datasciencelovers.graphy.com/... • ---------------------------------------------------------- • Watch demo of Self Study Material - • Data Analyst - Course Notes | Python,... • Outside India, PayPal for Self Study Material ($5) - [email protected] • ---------------------------------------------------------- • Contact Mail Id : [email protected] • ---------------------------------------------------------- • In this video, you will learn how to work on a real project of Data Analysis with Python. Questions are given in the project and then solved with the help of Python. It is a project of Data Analysis with Python or you can say, Data Science with Python. • The commands that we used in this project : • import pandas as pd -- To import Pandas library • pd.read_csv - To import the CSV file in Jupyter notebook • head() - It shows the first N rows in the data (by default, N=5) • df.isnull( ).sum( ) - It detects the missing values from each column of the dataframe. • df.drop(‘Col_name’ ) - To drop a column from dataframe. • value_counts - In a column, it shows all the unique values with their count. It can be applied on a single column only. • df.groupby(‘Col_1’)[‘Col_2’] .sum( ) - To create groups - Two Keys – Apply on Col_2 grouped by Col_1. • df['Column_name'].map( { old1:new1 , old2:new2} ) – Change the all values of a column from old to new. We have to write for all values of column otherwise Nan will appear. • df['Column_name'].mean() - To show Mean value of a column. • df.groupby('Column_1').Column_2.describe() - To create groups based on Column1 and show statistics summary based on Column2. • ....................................................................... • Q. 1) Instruction ( For Data Cleaning ) - Remove the column that only contains missing values. • Q. 2) Question ( Based on Filtering + Value Counts ) - For Speeding , were Men or Women stopped more often ? • Q. 3) Question ( Groupby ) - Does gender affect who gets searched during a stop ? • Question ( mapping + data-type casting ) • Q. 4) Question ( mapping + data-type casting ) - What is the mean stop_duration ? • Q. 5) Question ( Groupby , Describe ) - Compare the age distributions for each violation. • ------------------------------------------------------- • You must check our other videos : • Project 8 - • Project - 8 | Data Analysis with Pyth... • Project 7 - • Project - 7 | Data Analysis with Pyth... • Project 6 - • Project - 6 | Data Analysis with Pyth... • Project 5 - • Project - 5 | Data Analysis with Pyth... • Project 4 - • Project - 4 | Data Analysis with Pyth... • Project 2 - • Project - 2 | Data Analysis with Pyth... • Project 1 - • Project - 1 | Data Analysis with Pyth... • #python #dataanalytics #datascience #project
#############################
