Numerical Diffrentiation newton forward and backward formula numericalmethods by sirshayan











>> YOUR LINK HERE: ___ http://youtube.com/watch?v=Mi8omxHXryQ

Numerical differentiation is a method for approximating the derivative of a function at a given point using numerical methods. When the interval is equal, it's called equal interval numerical differentiation. • Here are the formulas for equal interval numerical differentiation: • 1. Forward Difference: • f'(x) ≈ [f(x+h) - f(x)]/h • 1. Backward Difference: • f'(x) ≈ [f(x) - f(x-h)]/h • 1. Central Difference: • f'(x) ≈ [f(x+h) - f(x-h)]/(2h) • where: • f(x) is the function value at point x • h is the equal interval size • f'(x) is the approximate derivative at point x • These formulas estimate the derivative by calculating the slope of the secant line between two nearby points. • Note: •    • NUMERICAL ANALYSIS   •    • FOURIER TRANSFORM (ENGINEERING MATHEM...   •    • class  11 Mathematics sindh board   •    • Probability || zero to Hero ||   •    • special problems   •    • Laplace Transform #csirnet #gate comp...   • Sir Shayan ❀️ social media links • Facebook: • https://www.facebook.com/share/vLNSkE... ( Mathematical Academy ♾️) • What's app contact no : • 03430238156 πŸ“žπŸ“² •    • Integration smashed ||@sirshayan||   • #numericalanalysis #numericalmethods

#############################









New on site
Content Report
Youtor.org / YTube video Downloader Β© 2025

created by www.youtor.org