Intro to Machine Learning Lesson 1 How Models Work Kaggle
YOUR LINK HERE:
http://youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners. • 🔗 Learning resources: https://github.com/ayush714/ML001-Pro... • 💻 Code: https://github.com/ayush714/ML001-Pro... • ✏️ Course developed by Ayush Singh. Check out his channel: / neweraa • ❤️ Try interactive AI courses we love, right in your browser: https://scrimba.com/freeCodeCamp-AI (Made possible by a grant from our friends at Scrimba) • ⭐️ Course Contents ⭐️ • ⌨️ (0:00:00) Course Introduction • ⌨️ (0:04:34) Fundamentals of Machine Learning • ⌨️ (0:25:22) Supervised Learning and Unsupervised Learning In Depth • ⌨️ (0:35:39) Linear Regression • ⌨️ (1:07:06) Logistic Regression • ⌨️ (1:24:12) Project: House Price Predictor • ⌨️ (1:45:16) Regularization • ⌨️ (2:01:12) Support Vector Machines • ⌨️ (2:29:55) Project: Stock Price Predictor • ⌨️ (3:05:55) Principal Component Analysis • ⌨️ (3:29:14) Learning Theory • ⌨️ (3:47:38) Decision Trees • ⌨️ (4:58:19) Ensemble Learning • ⌨️ (5:53:28) Boosting, pt 1 • ⌨️ (6:11:16) Boosting, pt 2 • ⌨️ (6:44:10) Stacking Ensemble Learning • ⌨️ (7:09:52) Unsupervised Learning, pt 1 • ⌨️ (7:26:58) Unsupervised Learning, pt 2 • ⌨️ (7:55:16) K-Means • ⌨️ (8:20:21) Hierarchical Clustering • ⌨️ (8:50:28) Project: Heart Failure Prediction • ⌨️ (9:33:29) Project: Spam/Ham Detector • 🎉 Thanks to our Champion and Sponsor supporters: • 👾 Wong Voon jinq • 👾 hexploitation • 👾 Katia Moran • 👾 BlckPhantom • 👾 Nick Raker • 👾 Otis Morgan • 👾 DeezMaster • 👾 AppWrite • -- • Learn to code for free and get a developer job: https://www.freecodecamp.org • Read hundreds of articles on programming: https://freecodecamp.org/news
#############################
