Evgeny Smirnov — Polytopes and K theory of toric and flag varieties











>> YOUR LINK HERE: ___ http://youtube.com/watch?v=aWOFvEvW0Es

In 1992 Askold Khovanskii and Alexander Pukhlikov proposed a description of the cohomology ring for a smooth toric variety as the quotient of the ring of differential operators with constant coefficients modulo the annihilator of the volume polynomial for the moment polytope of this variety. Later Kiumars Kaveh observed that the cohomology ring of a full flag variety can be obtained by applying the same construction to Gelfand–Zetlin polytope. • I will speak about our work with Leonid Monin generalizing these results for the case of K-theory. Namely, we describe algebras with a Gorenstein duality pairing as quotients of the ring generated by shift operators. Then we apply this construction to describe the Grothendieck ring of a smooth toric variety; for this we consider shift operators modulo the annihilator of the Ehrhart polynomial of the moment polytope (this substitutes the volume polynomial). Finally, this construction can be generalized to the case of full flag varieties of type A. This description allows us to make computations in the Grothendieck ring of a full flag variety by intersecting faces of Gelfand–Zetlin polytopes; this generalizes our result with Valentina Kiritchenko and Vladlen Timorin.","styleRuns":[{"startIndex":0,"length":1223,"styleRunExtensions":{"styleRunColorMapExtension":{"colorMap":[{"key":"USER_INTERFACE_THEME_DARK","value":4294967295},{"key":"USER_INTERFACE_THEME_LIGHT","value":4279440147}]}},"fontFamilyName":"Roboto"}]},"headerRuns":[{"startIndex":0,"length":1223,"headerMapping":"ATTRIBUTED_STRING_HEADER_MAPPING_UNSPECIFIED"}]}},{"itemSectionRenderer":{"contents":[{"continuationItemRenderer":{"trigger":"CONTINUATION_TRIGGER_ON_ITEM_SHOWN","continuationEndpoint":{"clickTrackingParams":"CLkBELsvGAIiEwjTtZCy98iLAxWQ60IFHbfOJn4=","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/next"}},"continuationCommand":{"token":"Eg0SC2FXT0Z2RXZXMEVzGAYyJSIRIgthV09GdkV2VzBFczAAeAJCEGNvbW1lbnRzLXNlY3Rpb24%3D","request":"CONTINUATION_REQUEST_TYPE_WATCH_NEXT"}}}}],"trackingParams":"CLkBELsvGAIiEwjTtZCy98iLAxWQ60IFHbfOJn4=","sectionIdentifier":"comment-item-section","targetId":"comments-section"}}],"trackingParams":"CLgBELovIhMI07WQsvfIiwMVkOtCBR23ziZ-"}},"secondaryResults":{"secondaryResults":{"results":[{"compactVideoRenderer":{"videoId":"WHaXevK-X9k","thumbnail":{"thumbnails":[{"url":"https://i.ytimg.com/vi/WHaXevK-X9k/hqdefault.jpg?sqp=-oaymwE1CKgBEF5IVfKriqkDKAgBFQAAiEIYAXABwAEG8AEB-AH-CYAC0AWKAgwIABABGGUgZShlMA8= rs=AOn4CLAOf_vYlaBb8X6FLraTRbaHi92uhw","width":168,"height":94},{"url":"https://i.ytimg.com/vi/WHaXevK-X9k/hqdefault.jpg?sqp=-oaymwE2CNACELwBSFXyq4qpAygIARUAAIhCGAFwAcABBvABAfgB_gmAAtAFigIMCAAQARhlIGUoZTAP rs=AOn4CLBq6L1dqPj4nHaaNBQ_h_R6o_Q34Q","width":336,"height":188}]},"title":{"accessibility":{"accessibilityData":{"label":"Irina Bobrova — Affine Weyl groups and non-abelian discrete systems by Mathematical Physics School 42 views 7 months ago 24 minutes"}},"simpleText":"Irina Bobrova — Affine Weyl groups and non-abelian discrete systems"},"longBylineText":{"runs":[{"text":"Mathematical Physics School","navigationEndpoint":{"clickTrackingParams":"CLEBEKQwGAAiEwjTtZCy98iLAxWQ60IFHbfOJn4yB3JlbGF0ZWQ=","commandMetadata":{"webCommandMetadata":{"url":"/@mathematicalphysicsschool3398","webPageType":"WEB_PAGE_TYPE_CHANNEL","rootVe":3611,"apiUrl":"/youtubei/v1/browse"}},"browseEndpoint":{"browseId":"UCRACd55YrSwO8Fuy4Nx2oAA","canonicalBaseUrl":"/@mathematicalphysicsschool3398"}}}]},"publishedTimeText":{"simpleText":"7 months ago"},"viewCountText":{"simpleText":"42 views"},"lengthText":{"accessibility":{"accessibilityData":{"label":"24 minutes, 42 seconds"}},"simpleText":"24:42"},"navigationEndpoint":{"clickTrackingParams":"CLEBEKQwGAAiEwjTtZCy98iLAxWQ60IFHbfOJn4yB3JlbGF0ZWRIy6Db3sS34bFpmgEFCAEQ-B0=","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=WHaXevK-X9k","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"WHaXevK-X9k","nofollow":true,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-uxaxiv0nxx5q-nv4l.googlevideo.com/initplayback?source=youtube oeis=1 c=WEB oad=3200 ovd=3200 oaad=11000 oavd=11000 ocs=700 oewis=1 oputc=1 ofpcc=1 msp=1 odepv=1 id=5876977af2be5fd9 ip=2a02%3A27aa%3A0%3A0%3A0%3A0%3A0%3Ad49 initcwndbps=1153750 mt=1739733892 oweuc= pxtags=Cg4KAnR4Egg1MTM5MzE2NA rxtags=Cg4KAnR4Egg1MTM5MzE2MA%2CCg4KAnR4Egg1MTM5MzE2MQ%2CCg4KAnR4Egg1MTM5MzE2Mg%2CCg4KAnR4Egg1MTM5MzE2Mw%2CCg4KAnR4Egg1MTM5MzE2NA"}}}}},"shortBylineText":{"runs":[{"text":"Mathematical Physics School","navigationEndpoint":{"clickTrackingParams":"CLEBEKQwGAAiEwjTtZCy98iLAxWQ60IFHbfOJn4yB3JlbGF0ZWQ=","commandMetadata":{"webCommandMetadata":{"url":"/@mathematicalphysicsschool3398","webPageType":"WEB_PAGE_TYPE_CHANNEL","rootVe":3611,"apiUrl":"/youtubei/v1/browse"}},"browseEndpoint":{"browseId":"UCRACd55YrSwO8Fuy4Nx2oAA","canonicalBaseUrl":"/@mathematicalphysicsschool3398"}}}]},"channelThumbnail":{"thumbnails":[{"url":"https://yt3.ggpht.com/ytc/AIdro_kQa3Tyd5Iz9sOiTy4GftaQrTUJLZRiuVqI7HLIvezpMGs=s68-c-k-c0x00ffffff-no-rj","width":68,"height":68}]},"trackingParams":"CLEBEKQwGAAiEwjTtZCy98iLAxWQ60IFHbfOJn5A2b_5la_vpbtY","shortViewCountText":{"accessibility":{"accessibilityData":{"label":"42 views"}},"simpleText":"42 views"},"menu":{"menuRenderer":{"items":[{"menuServiceItemRenderer":{"text":{"runs":[{"text":"Add to queue"}]},"icon":{"iconType":"ADD_TO_QUEUE_TAIL"},"serviceEndpoint":{"clickTrackingParams":"CLYBEP6YBBgFIhMI07WQsvfIiwMVkOtCBR23ziZ-","commandMetadata":{"webCommandMetadata":{"sendPost":true}},"signalServiceEndpoint":{"signal":"CLIENT_SIGNAL","actions":[{"clickTrackingParams":"CLYBEP6YBBgFIhMI07WQsvfIiwMVkOtCBR23ziZ-","addToPlaylistCommand":{"openMiniplayer":false,"openListPanel":true,"videoId":"WHaXevK-X9k","listType":"PLAYLIST_EDIT_LIST_TYPE_QUEUE","onCreateListCommand":{"clickTrackingParams":"CLYBEP6YBBgFIhMI07WQsvfIiwMVkOtCBR23ziZ-","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/playlist/create"}},"createPlaylistServiceEndpoint":{"videoIds":["WHaXevK-X9k"],"params":"CAQ%3D"}},"videoIds":["WHaXevK-X9k"]}},{"clickTrackingParams":"CLYBEP6YBBgFIhMI07WQsvfIiwMVkOtCBR23ziZ-","openPopupAction":{"popup":{"notificationActionRenderer":{"responseText":{"simpleText":"Added to queue"},"trackingParams":"CLcBELlqIhMI07WQsvfIiwMVkOtCBR23ziZ-"}},"popupType":"TOAST"}}]}},"trackingParams":"CLYBEP6YBBgFIhMI07WQsvfIiwMVkOtCBR23ziZ-"}},{"menuServiceItemDownloadRenderer":{"serviceEndpoint":{"clickTrackingParams":"CLUBENGqBRgGIhMI07WQsvfIiwMVkOtCBR23ziZ-","offlineVideoEndpoint":{"videoId":"WHaXevK-X9k","onAddCommand":{"clickTrackingParams":"CLUBENGqBRgGIhMI07WQsvfIiwMVkOtCBR23ziZ-","getDownloadActionCommand":{"videoId":"WHaXevK-X9k","params":"CAIQAA%3D%3D"}}}},"trackingParams":"CLUBENGqBRgGIhMI07WQsvfIiwMVkOtCBR23ziZ-"}},{"menuServiceItemRenderer":{"text":{"runs":[{"text":"Share"}]},"icon":{"iconType":"SHARE"},"serviceEndpoint":{"clickTrackingParams":"CLEBEKQwGAAiEwjTtZCy98iLAxWQ60IFHbfOJn4=","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/share/get_share_panel"}},"shareEntityServiceEndpoint":{"serializedShareEntity":"CgtXSGFYZXZLLVg5aw%3D%3D","commands":[{"clickTrackingParams":"CLEBEKQwGAAiEwjTtZCy98iLAxWQ60IFHbfOJn4=","openPopupAction":{"popup":{"unifiedSharePanelRenderer":{"trackingParams":"CLQBEI5iIhMI07WQsvfIiwMVkOtCBR23ziZ-","showLoadingSpinner":true}},"popupType":"DIALOG","beReused":true}}]}},"trackingParams":"CLEBEKQwGAAiEwjTtZCy98iLAxWQ60IFHbfOJn4=","hasSeparator":true}}],"trackingParams":"CLEBEKQwGAAiEwjTtZCy98iLAxWQ60IFHbfOJn4=","accessibility":{"accessibilityData":{"label":"Action menu"}},"targetId":"watch-related-menu-button"}},"thumbnailOverlays":[{"thumbnailOverlayTimeStatusRenderer":{"text":{"accessibility":{"accessibilityData":{"label":"24 minutes, 42 seconds"}},"simpleText":"24:42"},"style":"DEFAULT"}},{"thumbnailOverlayToggleButtonRenderer":{"isToggled":false,"untoggledIcon":{"iconType":"WATCH_LATER"},"toggledIcon":{"iconType":"CHECK"},"untoggledTooltip":"Watch later","toggledTooltip":"Added","untoggledServiceEndpoint":{"clickTrackingParams":"CLMBEPnnAxgBIhMI07WQsvfIiwMVkOtCBR23ziZ-","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/browse/edit_playlist"}},"playlistEditEndpoint":{"playlistId":"WL","actions":[{"addedVideoId":"WHaXevK-X9k","action":"ACTION_ADD_VIDEO"}]}},"toggledServiceEndpoint":{"clickTrackingParams":"CLMBEPnnAxgBIhMI07WQsvfIiwMVkOtCBR23ziZ-","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/browse/edit_playlist"}},"playlistEditEndpoint":{"playlistId":"WL","actions":[{"action":"ACTION_REMOVE_VIDEO_BY_VIDEO_ID","removedVideoId":"WHaXevK-X9k"}]}},"untoggledAccessibility":{"accessibilityData":{"label":"Watch later"}},"toggledAccessibility":{"accessibilityData":{"label":"Added"}},"trackingParams":"CLMBEPnnAxgBIhMI07WQsvfIiwMVkOtCBR23ziZ-"}},{"thumbnailOverlayToggleButtonRenderer":{"untoggledIcon":{"iconType":"ADD_TO_QUEUE_TAIL"},"toggledIcon":{"iconType":"PLAYLIST_ADD_CHECK"},"untoggledTooltip":"Add to queue","toggledTooltip":"Added","untoggledServiceEndpoint":{"clickTrackingParams":"CLIBEMfsBBgCIhMI07WQsvfIiwMVkOtCBR23ziZ-","commandMetadata":{"webCommandMetadata":{"sendPost":true}},"signalServiceEndpoint":{"signal":"CLIENT_SIGNAL","actions":[{"clickTrackingParams":"CLIBEMfsBBgCIhMI07WQsvfIiwMVkOtCBR23ziZ-","addToPlaylistCommand":{"openMiniplayer":false,"openListPanel":true,"videoId":"WHaXevK-X9k","listType":"PLAYLIST_EDIT_LIST_TYPE_QUEUE","onCreateListCommand":{"clickTrackingParams":"CLIBEMfsBBgCIhMI07WQsvfIiwMVkOtCBR23ziZ-","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/playlist/create"}},"createPlaylistServiceEndpoint":{"videoIds":["WHaXevK-X9k"],"params":"CAQ%3D"}},"videoIds":["WHaXevK-X9k"]}}]}},"untoggledAccessibility":{"accessibilityData":{"label":"Add to queue"}},"toggledAccessibility":{"accessibilityData":{"label":"Added"}},"trackingParams":"CLIBEMfsBBgCIhMI07WQsvfIiwMVkOtCBR23ziZ-"}},{"thumbnailOverlayNowPlayingRenderer":{"text":{"runs":[{"text":"Now playing"}]}}}],"accessibility":{"accessibilityData":{"label":"Irina Bobrova — Affine Weyl groups and non-abelian discrete systems - 24 minutes - Go to channel - Mathematical Physics School - 42 views - 7 months ago - play video"}},"richThumbnail":{"movingThumbnailRenderer":{"enableHoveredLogging":true,"enableOverlay":true}}}},{"lockupViewModel":{"contentImage":{"collectionThumbnailViewModel":{"primaryThumbnail":{"thumbnailViewModel":{"image":{"sources":[{"url":"https://i.ytimg.com/vi/eQ78vz1aY90/hqdefault.jpg?sqp=-oaymwEwCKgBEF5IWvKriqkDIwgBFQAAiEIYAfABAfgB_gmAAtAFigIMCAAQARhlIGUoZTAP rs=AOn4CLD1ET2DN2CDkWz645AqWhSstvQ_7Q","width":168,"height":94},{"url":"https://i.ytimg.com/vi/eQ78vz1aY90/hqdefault.jpg?sqp=-oaymwExCNACELwBSFryq4qpAyMIARUAAIhCGAHwAQH4Af4JgALQBYoCDAgAEAEYZSBlKGUwDw== rs=AOn4CLDpdkgc2qNI09Ga9XtWDun7kO06Pw","width":336,"height":188}]},"overlays":[{"thumbnailOverlayBadgeViewModel":{"thumbnailBadges":[{"thumbnailBadgeViewModel":{"icon":{"sources":[{"clientResource":{"imageName":"PLAYLISTS"}}]},"text":"25 videos","badgeStyle":"THUMBNAIL_OVERLAY_BADGE_STYLE_DEFAULT","backgroundColor":{"lightTheme":2500134,"darkTheme":2500134}}}],"position":"THUMBNAIL_OVERLAY_BADGE_POSITION_BOTTOM_END"}},{"thumbnailHoverOverlayViewModel":{"icon":{"sources":[{"clientResource":{"imageName":"PLAY_ALL"}}]},"text":{"content":"Play all","styleRuns":[{"startIndex":0,"length":8}]},"style":"THUMBNAIL_HOVER_OVERLAY_STYLE_COVER"}}],"backgroundColor":{"lightTheme":4144959,"darkTheme":4144959}}},"stackColor":{"lightTheme":10066329,"darkTheme":9211020}}},"metadata":{"lockupMetadataViewModel":{"title":{"content":"RTISaRT–2024: Representation Theory, Integrable Systems and Related Topics"},"metadata":{"contentMetadataViewModel":{"metadataRows":[{"metadataParts":[{"text":{"content":"Mathematical Physics School

#############################









New on site
Content Report
Youtor.org / YTube video Downloader © 2025

created by www.youtor.org