Integral Por Partes Exercícios Resolvidos Calc 1 e 2 parte 6
>> YOUR LINK HERE: ___ http://youtube.com/watch?v=zGs_aB932SQ
Como fazer uma integração por partes? • Para os propósitos da integração por partes, basta tomar v = −cos x, menos prezando a constante arbitrária da integral v = ∫ senx dx, pois uma tal escolha da função v é suficiente para validar a fórmula 16.2. • Exemplo 16.2 Calcular ∫ xlnx dx. Soluç˜ao. Tomamos u = lnx, e dv = x dx. • Quais são as técnicas de integração? • Unidade: Técnicas de integração • Integração por partes. • Integração por substituição. • Regra da cadeia reversa. • Expansão em frações parciais. • Integração usando identidades trigonométricas. • Substituição trigonométrica. • INTEGRAÇÃO POR PARTES • integral por partes • metodo de integração por partes • integral de e^x cos x dx • integral por partes • integral de x cos x^2 • integral por partes senx cosx dx • integral de cos x^2 • integral por partes khan academy • o valor da integral 2e^x cos x dx • integral por partes duas vezes • A integração por partes é um método que permite expressar a integral de um produto de funções em outra integral. A integração por partes pode ser vista como uma versão integrada da regra do produto. • A regra do LIATE para processo de integração por partes • integral por partes exercicios resolvidos pdf • integral por partes liate • integral por partes definida • integral por partes formula • integração por partes integral • integral por substituição • integral por partes exponencial • integral por partes trigonométrica • Sabe quando surge aquela integral que só dá pra ser revolvida por partes? Pois então... quando vamos escolher os termos u e dv, é importante que saibamos escolhê-los de forma sábia, pois do contrário podemos dificultar o processo de integração. • Uma regra que funciona para a maioria dos casos - e que nos oferece uma espécie de luz sobre as trevas ocultas do Cálculo - é a chamada regra do LIATE. Partindo dessa regra, devemos escolher os termos u e dv de acordo com a ordem que as funções são representadas dentro do anagrama L-I-A-T-E : • L = funções Logarítmicas • I = funções trigonométricas Inversas • A = funções Algébricas • T = funções Trigonométricas • E = funções Exponenciais • integração por partes exemplos, • integração por substituição, • integração por partes online, • integral por partes exercícios resolvidos pdf, • integração por partes pdf, • integração por partes definida, • integração por partes symbolab, • integração por partes ppt • Tags: integração por partes, integral por partes exercicios, integração por partes exercicios, exercicios integral por partes, integral por partes exemplos, integral definida por partes,integral por partes exercicios resolvidos, integração por partes, integrais por partes, exemplo integral por partes, integração por parte, Integração por Partes u.dv, integração por partes exercicios resolvidos,integral por parte, Integração por partes, integral por partes, integral, cálculo","styleRuns":[{"startIndex":0,"length":2791,"styleRunExtensions":{"styleRunColorMapExtension":{"colorMap":[{"key":"USER_INTERFACE_THEME_DARK","value":4294967295},{"key":"USER_INTERFACE_THEME_LIGHT","value":4279440147}]}},"fontFamilyName":"Roboto"}]},"headerRuns":[{"startIndex":0,"length":2791,"headerMapping":"ATTRIBUTED_STRING_HEADER_MAPPING_UNSPECIFIED"}]}},{"itemSectionRenderer":{"contents":[{"continuationItemRenderer":{"trigger":"CONTINUATION_TRIGGER_ON_ITEM_SHOWN","continuationEndpoint":{"clickTrackingParams":"CMIBELsvGAIiEwj8-ceFyuqJAxUYmowIHQVVOFU=","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/next"}},"continuationCommand":{"token":"Eg0SC3pHc19hQjkzMlNRGAYyJSIRIgt6R3NfYUI5MzJTUTAAeAJCEGNvbW1lbnRzLXNlY3Rpb24%3D","request":"CONTINUATION_REQUEST_TYPE_WATCH_NEXT"}}}}],"trackingParams":"CMIBELsvGAIiEwj8-ceFyuqJAxUYmowIHQVVOFU=","sectionIdentifier":"comment-item-section","targetId":"comments-section"}}],"trackingParams":"CMEBELovIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},"secondaryResults":{"secondaryResults":{"results":[{"compactVideoRenderer":{"videoId":"UWevmy2JQjA","thumbnail":{"thumbnails":[{"url":"https://i.ytimg.com/vi/UWevmy2JQjA/hqdefault.jpg?sqp=-oaymwEbCKgBEF5IVfKriqkDDggBFQAAiEIYAXABwAEG rs=AOn4CLBZLF0ghNEQYPkrfH7aVaadMs7cAw","width":168,"height":94},{"url":"https://i.ytimg.com/vi/UWevmy2JQjA/hqdefault.jpg?sqp=-oaymwEcCNACELwBSFXyq4qpAw4IARUAAIhCGAFwAcABBg== rs=AOn4CLDNVTvsDDqN_wSy52c4oM53pHs2Dw","width":336,"height":188}]},"title":{"accessibility":{"accessibilityData":{"label":"Equações Diferenciais Separáveis 🚨 APLICAÇÃO #09 door Prof. MURAKAMI - MATEMÁTICA RAPIDOLA 6.449 weergaven 2 jaar geleden 23 minuten"}},"simpleText":"Equações Diferenciais Separáveis 🚨 APLICAÇÃO #09"},"longBylineText":{"runs":[{"text":"Prof. MURAKAMI - MATEMÁTICA RAPIDOLA","navigationEndpoint":{"clickTrackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFUyB3JlbGF0ZWQ=","commandMetadata":{"webCommandMetadata":{"url":"/@Murakami.","webPageType":"WEB_PAGE_TYPE_CHANNEL","rootVe":3611,"apiUrl":"/youtubei/v1/browse"}},"browseEndpoint":{"browseId":"UCoKv7o7GFD188FcTbhsx15w","canonicalBaseUrl":"/@Murakami."}}}]},"publishedTimeText":{"simpleText":"2 jaar geleden"},"viewCountText":{"simpleText":"6.449 weergaven"},"lengthText":{"accessibility":{"accessibilityData":{"label":"23 minuten en 56 seconden"}},"simpleText":"23:56"},"navigationEndpoint":{"clickTrackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFUyB3JlbGF0ZWRIpLLf-4Htz7XMAZoBBQgBEPgd","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=UWevmy2JQjA","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"UWevmy2JQjA","nofollow":true,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr2---sn-5hnekn7d.googlevideo.com/initplayback?source=youtube oeis=1 c=WEB oad=3200 ovd=3200 oaad=11000 oavd=11000 ocs=700 oewis=1 oputc=1 ofpcc=1 msp=1 odepv=1 id=5167af9b2d894230 ip=5.34.180.93 initcwndbps=467500 mt=1732093760 oweuc= pxtags=Cg4KAnR4Egg1MTM0MDY1Mw rxtags=Cg4KAnR4Egg1MTM0MDIyNg%2CCg4KAnR4Egg1MTM0MDIyNw%2CCg4KAnR4Egg1MTM0MDIyOA%2CCg4KAnR4Egg1MTM0MDIyOQ%2CCg4KAnR4Egg1MTM0MDY1Mw%2CCg4KAnR4Egg1MTM0MDY1NA%2CCg4KAnR4Egg1MTM0MDY1NQ%2CCg4KAnR4Egg1MTM0MDY1Ng"}}}}},"shortBylineText":{"runs":[{"text":"Prof. MURAKAMI - MATEMÁTICA RAPIDOLA","navigationEndpoint":{"clickTrackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFUyB3JlbGF0ZWQ=","commandMetadata":{"webCommandMetadata":{"url":"/@Murakami.","webPageType":"WEB_PAGE_TYPE_CHANNEL","rootVe":3611,"apiUrl":"/youtubei/v1/browse"}},"browseEndpoint":{"browseId":"UCoKv7o7GFD188FcTbhsx15w","canonicalBaseUrl":"/@Murakami."}}}]},"channelThumbnail":{"thumbnails":[{"url":"https://yt3.ggpht.com/MWKq6Qg29mrCd3suotoMAZv2xLQ0PmDE1lMFaZuZSPmLx2oSJvn9iwW_PC3VBrE0XyQzWhwGJA=s68-c-k-c0x00ffffff-no-rj","width":68,"height":68}]},"ownerBadges":[{"metadataBadgeRenderer":{"icon":{"iconType":"CHECK_CIRCLE_THICK"},"style":"BADGE_STYLE_TYPE_VERIFIED","tooltip":"Geverifieerd","trackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFU=","accessibilityData":{"label":"Geverifieerd"}}}],"trackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFVAsISl7LLz67NR","shortViewCountText":{"accessibility":{"accessibilityData":{"label":"6,4 duizend weergaven"}},"simpleText":"6,4K weergaven"},"menu":{"menuRenderer":{"items":[{"menuServiceItemRenderer":{"text":{"runs":[{"text":"Toevoegen aan wachtrij"}]},"icon":{"iconType":"ADD_TO_QUEUE_TAIL"},"serviceEndpoint":{"clickTrackingParams":"CL8BEP6YBBgGIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true}},"signalServiceEndpoint":{"signal":"CLIENT_SIGNAL","actions":[{"clickTrackingParams":"CL8BEP6YBBgGIhMI_PnHhcrqiQMVGJqMCB0FVThV","addToPlaylistCommand":{"openMiniplayer":false,"openListPanel":true,"videoId":"UWevmy2JQjA","listType":"PLAYLIST_EDIT_LIST_TYPE_QUEUE","onCreateListCommand":{"clickTrackingParams":"CL8BEP6YBBgGIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/playlist/create"}},"createPlaylistServiceEndpoint":{"videoIds":["UWevmy2JQjA"],"params":"CAQ%3D"}},"videoIds":["UWevmy2JQjA"]}},{"clickTrackingParams":"CL8BEP6YBBgGIhMI_PnHhcrqiQMVGJqMCB0FVThV","openPopupAction":{"popup":{"notificationActionRenderer":{"responseText":{"simpleText":"Toegevoegd aan wachtrij"},"trackingParams":"CMABELlqIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},"popupType":"TOAST"}}]}},"trackingParams":"CL8BEP6YBBgGIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},{"menuServiceItemDownloadRenderer":{"serviceEndpoint":{"clickTrackingParams":"CL4BENGqBRgHIhMI_PnHhcrqiQMVGJqMCB0FVThV","offlineVideoEndpoint":{"videoId":"UWevmy2JQjA","onAddCommand":{"clickTrackingParams":"CL4BENGqBRgHIhMI_PnHhcrqiQMVGJqMCB0FVThV","getDownloadActionCommand":{"videoId":"UWevmy2JQjA","params":"CAIQAA%3D%3D"}}}},"trackingParams":"CL4BENGqBRgHIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},{"menuServiceItemRenderer":{"text":{"runs":[{"text":"Delen"}]},"icon":{"iconType":"SHARE"},"serviceEndpoint":{"clickTrackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFU=","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/share/get_share_panel"}},"shareEntityServiceEndpoint":{"serializedShareEntity":"CgtVV2V2bXkySlFqQQ%3D%3D","commands":[{"clickTrackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFU=","openPopupAction":{"popup":{"unifiedSharePanelRenderer":{"trackingParams":"CL0BEI5iIhMI_PnHhcrqiQMVGJqMCB0FVThV","showLoadingSpinner":true}},"popupType":"DIALOG","beReused":true}}]}},"trackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFU=","hasSeparator":true}}],"trackingParams":"CLoBEKQwGAAiEwj8-ceFyuqJAxUYmowIHQVVOFU=","accessibility":{"accessibilityData":{"label":"Actiemenu"}},"targetId":"watch-related-menu-button"}},"thumbnailOverlays":[{"thumbnailOverlayTimeStatusRenderer":{"text":{"accessibility":{"accessibilityData":{"label":"23 minuten en 56 seconden"}},"simpleText":"23:56"},"style":"DEFAULT"}},{"thumbnailOverlayToggleButtonRenderer":{"isToggled":false,"untoggledIcon":{"iconType":"WATCH_LATER"},"toggledIcon":{"iconType":"CHECK"},"untoggledTooltip":"Later bekijken","toggledTooltip":"Toegevoegd","untoggledServiceEndpoint":{"clickTrackingParams":"CLwBEPnnAxgCIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/browse/edit_playlist"}},"playlistEditEndpoint":{"playlistId":"WL","actions":[{"addedVideoId":"UWevmy2JQjA","action":"ACTION_ADD_VIDEO"}]}},"toggledServiceEndpoint":{"clickTrackingParams":"CLwBEPnnAxgCIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/browse/edit_playlist"}},"playlistEditEndpoint":{"playlistId":"WL","actions":[{"action":"ACTION_REMOVE_VIDEO_BY_VIDEO_ID","removedVideoId":"UWevmy2JQjA"}]}},"untoggledAccessibility":{"accessibilityData":{"label":"Later bekijken"}},"toggledAccessibility":{"accessibilityData":{"label":"Toegevoegd"}},"trackingParams":"CLwBEPnnAxgCIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},{"thumbnailOverlayToggleButtonRenderer":{"untoggledIcon":{"iconType":"ADD_TO_QUEUE_TAIL"},"toggledIcon":{"iconType":"PLAYLIST_ADD_CHECK"},"untoggledTooltip":"Toevoegen aan wachtrij","toggledTooltip":"Toegevoegd","untoggledServiceEndpoint":{"clickTrackingParams":"CLsBEMfsBBgDIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true}},"signalServiceEndpoint":{"signal":"CLIENT_SIGNAL","actions":[{"clickTrackingParams":"CLsBEMfsBBgDIhMI_PnHhcrqiQMVGJqMCB0FVThV","addToPlaylistCommand":{"openMiniplayer":false,"openListPanel":true,"videoId":"UWevmy2JQjA","listType":"PLAYLIST_EDIT_LIST_TYPE_QUEUE","onCreateListCommand":{"clickTrackingParams":"CLsBEMfsBBgDIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/playlist/create"}},"createPlaylistServiceEndpoint":{"videoIds":["UWevmy2JQjA"],"params":"CAQ%3D"}},"videoIds":["UWevmy2JQjA"]}}]}},"untoggledAccessibility":{"accessibilityData":{"label":"Toevoegen aan wachtrij"}},"toggledAccessibility":{"accessibilityData":{"label":"Toegevoegd"}},"trackingParams":"CLsBEMfsBBgDIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},{"thumbnailOverlayNowPlayingRenderer":{"text":{"runs":[{"text":"Wordt nu afgespeeld"}]}}}],"accessibility":{"accessibilityData":{"label":"Equações Diferenciais Separáveis 🚨 APLICAÇÃO #09 - 23 minuten - Naar kanaal gaan - Prof. MURAKAMI - MATEMÁTICA RAPIDOLA - 6,4K weergaven - 2 jaar geleden - video afspelen"}},"richThumbnail":{"movingThumbnailRenderer":{"enableHoveredLogging":true,"enableOverlay":true}}}},{"compactVideoRenderer":{"videoId":"mSDgDw-8F2A","thumbnail":{"thumbnails":[{"url":"https://i.ytimg.com/vi/mSDgDw-8F2A/hqdefault.jpg?sqp=-oaymwEbCKgBEF5IVfKriqkDDggBFQAAiEIYAXABwAEG rs=AOn4CLC4Q7Mo4j7Ejdj8_RzTE2J6he0DOQ","width":168,"height":94},{"url":"https://i.ytimg.com/vi/mSDgDw-8F2A/hqdefault.jpg?sqp=-oaymwEcCNACELwBSFXyq4qpAw4IARUAAIhCGAFwAcABBg== rs=AOn4CLDKGk2aJvuxk2B9Pq487l9lKZdA4Q","width":336,"height":188}]},"title":{"accessibility":{"accessibilityData":{"label":"🤯 INTEGRAÇÃO POR PARTES PASSO A PASSO 🤯 door Prof. MURAKAMI - MATEMÁTICA RAPIDOLA 156.322 weergaven 6 jaar geleden 37 minuten"}},"simpleText":"🤯 INTEGRAÇÃO POR PARTES PASSO A PASSO 🤯"},"longBylineText":{"runs":[{"text":"Prof. MURAKAMI - MATEMÁTICA RAPIDOLA","navigationEndpoint":{"clickTrackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFUyB3JlbGF0ZWQ=","commandMetadata":{"webCommandMetadata":{"url":"/@Murakami.","webPageType":"WEB_PAGE_TYPE_CHANNEL","rootVe":3611,"apiUrl":"/youtubei/v1/browse"}},"browseEndpoint":{"browseId":"UCoKv7o7GFD188FcTbhsx15w","canonicalBaseUrl":"/@Murakami."}}}]},"publishedTimeText":{"simpleText":"6 jaar geleden"},"viewCountText":{"simpleText":"156.322 weergaven"},"lengthText":{"accessibility":{"accessibilityData":{"label":"37 minuten en 17 seconden"}},"simpleText":"37:17"},"navigationEndpoint":{"clickTrackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFUyB3JlbGF0ZWRIpLLf-4Htz7XMAZoBBQgBEPgd","commandMetadata":{"webCommandMetadata":{"url":"/watch?v=mSDgDw-8F2A","webPageType":"WEB_PAGE_TYPE_WATCH","rootVe":3832}},"watchEndpoint":{"videoId":"mSDgDw-8F2A","nofollow":true,"watchEndpointSupportedOnesieConfig":{"html5PlaybackOnesieConfig":{"commonConfig":{"url":"https://rr4---sn-5hne6nsz.googlevideo.com/initplayback?source=youtube oeis=1 c=WEB oad=3200 ovd=3200 oaad=11000 oavd=11000 ocs=700 oewis=1 oputc=1 ofpcc=1 msp=1 odepv=1 id=9920e00f0fbc1760 ip=5.34.180.93 initcwndbps=467500 mt=1732093760 oweuc= pxtags=Cg4KAnR4Egg1MTM0MDY1Mw rxtags=Cg4KAnR4Egg1MTM0MDIyNg%2CCg4KAnR4Egg1MTM0MDIyNw%2CCg4KAnR4Egg1MTM0MDIyOA%2CCg4KAnR4Egg1MTM0MDIyOQ%2CCg4KAnR4Egg1MTM0MDY1Mw%2CCg4KAnR4Egg1MTM0MDY1NA%2CCg4KAnR4Egg1MTM0MDY1NQ%2CCg4KAnR4Egg1MTM0MDY1Ng"}}}}},"shortBylineText":{"runs":[{"text":"Prof. MURAKAMI - MATEMÁTICA RAPIDOLA","navigationEndpoint":{"clickTrackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFUyB3JlbGF0ZWQ=","commandMetadata":{"webCommandMetadata":{"url":"/@Murakami.","webPageType":"WEB_PAGE_TYPE_CHANNEL","rootVe":3611,"apiUrl":"/youtubei/v1/browse"}},"browseEndpoint":{"browseId":"UCoKv7o7GFD188FcTbhsx15w","canonicalBaseUrl":"/@Murakami."}}}]},"channelThumbnail":{"thumbnails":[{"url":"https://yt3.ggpht.com/MWKq6Qg29mrCd3suotoMAZv2xLQ0PmDE1lMFaZuZSPmLx2oSJvn9iwW_PC3VBrE0XyQzWhwGJA=s68-c-k-c0x00ffffff-no-rj","width":68,"height":68}]},"ownerBadges":[{"metadataBadgeRenderer":{"icon":{"iconType":"CHECK_CIRCLE_THICK"},"style":"BADGE_STYLE_TYPE_VERIFIED","tooltip":"Geverifieerd","trackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFU=","accessibilityData":{"label":"Geverifieerd"}}}],"trackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFVA4K7w_fCBuJCZAQ==","shortViewCountText":{"accessibility":{"accessibilityData":{"label":"156 duizend weergaven"}},"simpleText":"156K weergaven"},"menu":{"menuRenderer":{"items":[{"menuServiceItemRenderer":{"text":{"runs":[{"text":"Toevoegen aan wachtrij"}]},"icon":{"iconType":"ADD_TO_QUEUE_TAIL"},"serviceEndpoint":{"clickTrackingParams":"CLgBEP6YBBgHIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true}},"signalServiceEndpoint":{"signal":"CLIENT_SIGNAL","actions":[{"clickTrackingParams":"CLgBEP6YBBgHIhMI_PnHhcrqiQMVGJqMCB0FVThV","addToPlaylistCommand":{"openMiniplayer":false,"openListPanel":true,"videoId":"mSDgDw-8F2A","listType":"PLAYLIST_EDIT_LIST_TYPE_QUEUE","onCreateListCommand":{"clickTrackingParams":"CLgBEP6YBBgHIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/playlist/create"}},"createPlaylistServiceEndpoint":{"videoIds":["mSDgDw-8F2A"],"params":"CAQ%3D"}},"videoIds":["mSDgDw-8F2A"]}},{"clickTrackingParams":"CLgBEP6YBBgHIhMI_PnHhcrqiQMVGJqMCB0FVThV","openPopupAction":{"popup":{"notificationActionRenderer":{"responseText":{"simpleText":"Toegevoegd aan wachtrij"},"trackingParams":"CLkBELlqIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},"popupType":"TOAST"}}]}},"trackingParams":"CLgBEP6YBBgHIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},{"menuServiceItemDownloadRenderer":{"serviceEndpoint":{"clickTrackingParams":"CLcBENGqBRgIIhMI_PnHhcrqiQMVGJqMCB0FVThV","offlineVideoEndpoint":{"videoId":"mSDgDw-8F2A","onAddCommand":{"clickTrackingParams":"CLcBENGqBRgIIhMI_PnHhcrqiQMVGJqMCB0FVThV","getDownloadActionCommand":{"videoId":"mSDgDw-8F2A","params":"CAIQAA%3D%3D"}}}},"trackingParams":"CLcBENGqBRgIIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},{"menuServiceItemRenderer":{"text":{"runs":[{"text":"Delen"}]},"icon":{"iconType":"SHARE"},"serviceEndpoint":{"clickTrackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFU=","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/share/get_share_panel"}},"shareEntityServiceEndpoint":{"serializedShareEntity":"CgttU0RnRHctOEYyQQ%3D%3D","commands":[{"clickTrackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFU=","openPopupAction":{"popup":{"unifiedSharePanelRenderer":{"trackingParams":"CLYBEI5iIhMI_PnHhcrqiQMVGJqMCB0FVThV","showLoadingSpinner":true}},"popupType":"DIALOG","beReused":true}}]}},"trackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFU=","hasSeparator":true}}],"trackingParams":"CLMBEKQwGAEiEwj8-ceFyuqJAxUYmowIHQVVOFU=","accessibility":{"accessibilityData":{"label":"Actiemenu"}}}},"thumbnailOverlays":[{"thumbnailOverlayTimeStatusRenderer":{"text":{"accessibility":{"accessibilityData":{"label":"37 minuten en 17 seconden"}},"simpleText":"37:17"},"style":"DEFAULT"}},{"thumbnailOverlayToggleButtonRenderer":{"isToggled":false,"untoggledIcon":{"iconType":"WATCH_LATER"},"toggledIcon":{"iconType":"CHECK"},"untoggledTooltip":"Later bekijken","toggledTooltip":"Toegevoegd","untoggledServiceEndpoint":{"clickTrackingParams":"CLUBEPnnAxgCIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/browse/edit_playlist"}},"playlistEditEndpoint":{"playlistId":"WL","actions":[{"addedVideoId":"mSDgDw-8F2A","action":"ACTION_ADD_VIDEO"}]}},"toggledServiceEndpoint":{"clickTrackingParams":"CLUBEPnnAxgCIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/browse/edit_playlist"}},"playlistEditEndpoint":{"playlistId":"WL","actions":[{"action":"ACTION_REMOVE_VIDEO_BY_VIDEO_ID","removedVideoId":"mSDgDw-8F2A"}]}},"untoggledAccessibility":{"accessibilityData":{"label":"Later bekijken"}},"toggledAccessibility":{"accessibilityData":{"label":"Toegevoegd"}},"trackingParams":"CLUBEPnnAxgCIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},{"thumbnailOverlayToggleButtonRenderer":{"untoggledIcon":{"iconType":"ADD_TO_QUEUE_TAIL"},"toggledIcon":{"iconType":"PLAYLIST_ADD_CHECK"},"untoggledTooltip":"Toevoegen aan wachtrij","toggledTooltip":"Toegevoegd","untoggledServiceEndpoint":{"clickTrackingParams":"CLQBEMfsBBgDIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true}},"signalServiceEndpoint":{"signal":"CLIENT_SIGNAL","actions":[{"clickTrackingParams":"CLQBEMfsBBgDIhMI_PnHhcrqiQMVGJqMCB0FVThV","addToPlaylistCommand":{"openMiniplayer":false,"openListPanel":true,"videoId":"mSDgDw-8F2A","listType":"PLAYLIST_EDIT_LIST_TYPE_QUEUE","onCreateListCommand":{"clickTrackingParams":"CLQBEMfsBBgDIhMI_PnHhcrqiQMVGJqMCB0FVThV","commandMetadata":{"webCommandMetadata":{"sendPost":true,"apiUrl":"/youtubei/v1/playlist/create"}},"createPlaylistServiceEndpoint":{"videoIds":["mSDgDw-8F2A"],"params":"CAQ%3D"}},"videoIds":["mSDgDw-8F2A"]}}]}},"untoggledAccessibility":{"accessibilityData":{"label":"Toevoegen aan wachtrij"}},"toggledAccessibility":{"accessibilityData":{"label":"Toegevoegd"}},"trackingParams":"CLQBEMfsBBgDIhMI_PnHhcrqiQMVGJqMCB0FVThV"}},{"thumbnailOverlayNowPlayingRenderer":{"text":{"runs":[{"text":"Wordt nu afgespeeld"}]}}}],"accessibility":{"accessibilityData":{"label":"🤯 INTEGRAÇÃO POR PARTES PASSO A PASSO 🤯 - 37 minuten - Naar kanaal gaan - Prof. MURAKAMI - MATEMÁTICA RAPIDOLA - 156K weergaven - 6 jaar geleden - video afspelen"}},"richThumbnail":{"movingThumbnailRenderer":{"movingThumbnailDetails":{"thumbnails":[{"url":"https://i.ytimg.com/an_webp/mSDgDw-8F2A/mqdefault_6s.webp?du=3000 sqp=CNC89rkG rs=AOn4CLB9HOEmzhG1DNY2u-y9xEKnAdjHAg","width":320,"height":180}],"logAsMovingThumbnail":true},"enableHoveredLogging":true,"enableOverlay":true}}}},{"lockupViewModel":{"contentImage":{"collectionThumbnailViewModel":{"primaryThumbnail":{"thumbnailViewModel":{"image":{"sources":[{"url":"https://i.ytimg.com/vi/pCdyAT0zCoU/hqdefault.jpg?sqp=-oaymwEWCKgBEF5IWvKriqkDCQgBFQAAiEIYAQ== rs=AOn4CLDFhhGFtQdyZx3vyIqNa9XhYzeCjQ","width":168,"height":94},{"url":"https://i.ytimg.com/vi/pCdyAT0zCoU/hqdefault.jpg?sqp=-oaymwEXCNACELwBSFryq4qpAwkIARUAAIhCGAE= rs=AOn4CLCec5Tj0kfzdNQRd9AYt0Z6BAQXbQ","width":336,"height":188}]},"overlays":[{"thumbnailOverlayBadgeViewModel":{"thumbnailBadges":[{"thumbnailBadgeViewModel":{"icon":{"sources":[{"clientResource":{"imageName":"PLAYLISTS"}}]},"text":"29 video's","badgeStyle":"THUMBNAIL_OVERLAY_BADGE_STYLE_DEFAULT","backgroundColor":{"lightTheme":3344135,"darkTheme":3344135}}}],"position":"THUMBNAIL_OVERLAY_BADGE_POSITION_BOTTOM_END"}},{"thumbnailHoverOverlayViewModel":{"icon":{"sources":[{"clientResource":{"imageName":"PLAY_ALL"}}]},"text":{"content":"Alles afspelen","styleRuns":[{"startIndex":0,"length":14}]},"style":"THUMBNAIL_HOVER_OVERLAY_STYLE_COVER"}}],"backgroundColor":{"lightTheme":5836045,"darkTheme":5836045}}},"stackColor":{"lightTheme":10054507,"darkTheme":9664118}}},"metadata":{"lockupMetadataViewModel":{"title":{"content":"EQUAÇÕES DIFERENCIAIS 2021"},"metadata":{"contentMetadataViewModel":{"metadataRows":[{"metadataParts":[{"text":{"content":"Prof. MURAKAMI - MATEMÁTICA RAPIDOLA
#############################